]. 一起来看看Efficientdet的keras实现吧,顺便训练一下自己的数据。 什么是Efficientdet目标检测算法. 1. The preprocessing logic has been included in the efficientnet model implementation. EfficientNets achieve state-of-the-art accuracy on ImageNet with an order of magnitude better efficiency: In high-accuracy regime, our EfficientNet-B7 achieves state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet with 66M parameters and 37B FLOPS, being 8.4x smaller and 6.1x faster on CPU inference than previous best Gpipe.. Looking at the above table, we can see a trade-off between model accuracy and model size. A Keras implementation of EfficientNet - 0.1.4 - a Python package on PyPI - Libraries.io. EfficientNet-B1~B7相对于B0来说改变了4个参数:width_coefficient, depth_coefficient, resolution和dropout_rate,分别是宽度系数、深度系数、输入图片分辨率和dropout比例。. currentframe () func_name = inspect. MobileNetV2: Inverted Residuals and Linear Bottlenecks. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (Zhang et al.,2018;Ma et al.,2018). A default set of BlockArgs are provided in keras_efficientnets.config. This is a mirror of the EfficientNet repo for offline usage. Keras Tuner is an open-source project developed entirely on GitHub. best_eval.txt checkpoint model.ckpt-12345.data-00000-of-00001 model.ckpt-12345.index model.ckpt-12345.meta GitHub 简介 TensorFlow 针对 JavaScript 针对移动设备和 IoT 设备 针对生产 Swift for TensorFlow(测试版) TensorFlow (r2.5) ... EfficientNet models for Keras. Pruning— Paramete… Including converted ImageNet21K weights. Browse other questions tagged apache-spark keras pyspark apache-spark-mllib efficientnet or ask your own question. Since we are already in the terminal, we can also download the newest EfficientNetB0 weights with the Noisy_Student augmentations. To convert the weights for Keras transfer learning applications, we can use the official script from the Keras documentation. You can also find a copy in my repository. EfficientNet is evolved from the MobileNet V2 building blocks, with the key insight that scaling up the width, depth or resolution can improve a network’s performance, and a balanced scaling of all three is the key to maximizing improvements. Tags: deep learning, keras, tutorial In particular, we first use AutoML MNAS Mobile framework to develop a mobile-size baseline network, named as EfficientNet-B0; Then, we use the compound scaling method to scale up this baseline to obtain EfficientNet-B1 to EfficientNet-B7. The weights are currently hosted on my GitHub repository and will be downloaded automatically by the EfficientNet implementation. About this. More than 56 million people use GitHub to discover, fork, and contribute to over 100 million projects. 神经网络学习小记录26——EfficientNet模型的复现详解学习前言什么是EfficientNet模型EfficientNet模型的特点EfficientNet网络的结构MobileNetV2网络部分实现代码图片预测学习前言2019年,谷歌新出EfficientNet,在其它网络的基础上,大幅度的缩小了参数的同时提高了预测准确度,简直太强了,我这样 … conda install. EfficientNets in Keras Keras implementation of EfficientNets from the paper EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Contains code to build the EfficientNets B0-B7 from the paper, and includes weights for configurations B0-B3. B4-B7 weights will be ported when made available from the Tensorflow repository. The TensorFlow-ONNX converter supports newer opsets with more active support. Learning Fine-grained Image Similarity with Deep Ranking is a novel application of neural networks, where the authors use a new multi scale architecture combined with a triplet loss to create a neural network that is able to perform image search. requiring least FLOPS for inference) that reaches State-of-the-Art accuracy on both imagenet and common image classification transfer learning tasks.. conda install linux-64 v1.0.0; To install this package with conda run: conda install -c anaconda efficientnet You might find the following resources helpful. GitHub is where people build software. EfficientNets in Keras. 일단 이전에 pytorch 게시판에서 작성한 hardnet 등의 segmentation 이후의 classification 에 대한 모델 중. SOTA 알고리즘으로 efficientNet 을 사용하였다. Why Is Standard Deviation Important In Biology, Kent State Finance Faculty, Propel Water Beverage, Emancipation Day Tallahassee, What Is A Good Standard Deviation For Grades, An Example Of Passive Follow-up In Cohort Studies Is:, Honestly True Crossword Clue, Basic Security Officer Training, " /> ]. 一起来看看Efficientdet的keras实现吧,顺便训练一下自己的数据。 什么是Efficientdet目标检测算法. 1. The preprocessing logic has been included in the efficientnet model implementation. EfficientNets achieve state-of-the-art accuracy on ImageNet with an order of magnitude better efficiency: In high-accuracy regime, our EfficientNet-B7 achieves state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet with 66M parameters and 37B FLOPS, being 8.4x smaller and 6.1x faster on CPU inference than previous best Gpipe.. Looking at the above table, we can see a trade-off between model accuracy and model size. A Keras implementation of EfficientNet - 0.1.4 - a Python package on PyPI - Libraries.io. EfficientNet-B1~B7相对于B0来说改变了4个参数:width_coefficient, depth_coefficient, resolution和dropout_rate,分别是宽度系数、深度系数、输入图片分辨率和dropout比例。. currentframe () func_name = inspect. MobileNetV2: Inverted Residuals and Linear Bottlenecks. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (Zhang et al.,2018;Ma et al.,2018). A default set of BlockArgs are provided in keras_efficientnets.config. This is a mirror of the EfficientNet repo for offline usage. Keras Tuner is an open-source project developed entirely on GitHub. best_eval.txt checkpoint model.ckpt-12345.data-00000-of-00001 model.ckpt-12345.index model.ckpt-12345.meta GitHub 简介 TensorFlow 针对 JavaScript 针对移动设备和 IoT 设备 针对生产 Swift for TensorFlow(测试版) TensorFlow (r2.5) ... EfficientNet models for Keras. Pruning— Paramete… Including converted ImageNet21K weights. Browse other questions tagged apache-spark keras pyspark apache-spark-mllib efficientnet or ask your own question. Since we are already in the terminal, we can also download the newest EfficientNetB0 weights with the Noisy_Student augmentations. To convert the weights for Keras transfer learning applications, we can use the official script from the Keras documentation. You can also find a copy in my repository. EfficientNet is evolved from the MobileNet V2 building blocks, with the key insight that scaling up the width, depth or resolution can improve a network’s performance, and a balanced scaling of all three is the key to maximizing improvements. Tags: deep learning, keras, tutorial In particular, we first use AutoML MNAS Mobile framework to develop a mobile-size baseline network, named as EfficientNet-B0; Then, we use the compound scaling method to scale up this baseline to obtain EfficientNet-B1 to EfficientNet-B7. The weights are currently hosted on my GitHub repository and will be downloaded automatically by the EfficientNet implementation. About this. More than 56 million people use GitHub to discover, fork, and contribute to over 100 million projects. 神经网络学习小记录26——EfficientNet模型的复现详解学习前言什么是EfficientNet模型EfficientNet模型的特点EfficientNet网络的结构MobileNetV2网络部分实现代码图片预测学习前言2019年,谷歌新出EfficientNet,在其它网络的基础上,大幅度的缩小了参数的同时提高了预测准确度,简直太强了,我这样 … conda install. EfficientNets in Keras Keras implementation of EfficientNets from the paper EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Contains code to build the EfficientNets B0-B7 from the paper, and includes weights for configurations B0-B3. B4-B7 weights will be ported when made available from the Tensorflow repository. The TensorFlow-ONNX converter supports newer opsets with more active support. Learning Fine-grained Image Similarity with Deep Ranking is a novel application of neural networks, where the authors use a new multi scale architecture combined with a triplet loss to create a neural network that is able to perform image search. requiring least FLOPS for inference) that reaches State-of-the-Art accuracy on both imagenet and common image classification transfer learning tasks.. conda install linux-64 v1.0.0; To install this package with conda run: conda install -c anaconda efficientnet You might find the following resources helpful. GitHub is where people build software. EfficientNets in Keras. 일단 이전에 pytorch 게시판에서 작성한 hardnet 등의 segmentation 이후의 classification 에 대한 모델 중. SOTA 알고리즘으로 efficientNet 을 사용하였다. Why Is Standard Deviation Important In Biology, Kent State Finance Faculty, Propel Water Beverage, Emancipation Day Tallahassee, What Is A Good Standard Deviation For Grades, An Example Of Passive Follow-up In Cohort Studies Is:, Honestly True Crossword Clue, Basic Security Officer Training, " /> ]. 一起来看看Efficientdet的keras实现吧,顺便训练一下自己的数据。 什么是Efficientdet目标检测算法. 1. The preprocessing logic has been included in the efficientnet model implementation. EfficientNets achieve state-of-the-art accuracy on ImageNet with an order of magnitude better efficiency: In high-accuracy regime, our EfficientNet-B7 achieves state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet with 66M parameters and 37B FLOPS, being 8.4x smaller and 6.1x faster on CPU inference than previous best Gpipe.. Looking at the above table, we can see a trade-off between model accuracy and model size. A Keras implementation of EfficientNet - 0.1.4 - a Python package on PyPI - Libraries.io. EfficientNet-B1~B7相对于B0来说改变了4个参数:width_coefficient, depth_coefficient, resolution和dropout_rate,分别是宽度系数、深度系数、输入图片分辨率和dropout比例。. currentframe () func_name = inspect. MobileNetV2: Inverted Residuals and Linear Bottlenecks. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (Zhang et al.,2018;Ma et al.,2018). A default set of BlockArgs are provided in keras_efficientnets.config. This is a mirror of the EfficientNet repo for offline usage. Keras Tuner is an open-source project developed entirely on GitHub. best_eval.txt checkpoint model.ckpt-12345.data-00000-of-00001 model.ckpt-12345.index model.ckpt-12345.meta GitHub 简介 TensorFlow 针对 JavaScript 针对移动设备和 IoT 设备 针对生产 Swift for TensorFlow(测试版) TensorFlow (r2.5) ... EfficientNet models for Keras. Pruning— Paramete… Including converted ImageNet21K weights. Browse other questions tagged apache-spark keras pyspark apache-spark-mllib efficientnet or ask your own question. Since we are already in the terminal, we can also download the newest EfficientNetB0 weights with the Noisy_Student augmentations. To convert the weights for Keras transfer learning applications, we can use the official script from the Keras documentation. You can also find a copy in my repository. EfficientNet is evolved from the MobileNet V2 building blocks, with the key insight that scaling up the width, depth or resolution can improve a network’s performance, and a balanced scaling of all three is the key to maximizing improvements. Tags: deep learning, keras, tutorial In particular, we first use AutoML MNAS Mobile framework to develop a mobile-size baseline network, named as EfficientNet-B0; Then, we use the compound scaling method to scale up this baseline to obtain EfficientNet-B1 to EfficientNet-B7. The weights are currently hosted on my GitHub repository and will be downloaded automatically by the EfficientNet implementation. About this. More than 56 million people use GitHub to discover, fork, and contribute to over 100 million projects. 神经网络学习小记录26——EfficientNet模型的复现详解学习前言什么是EfficientNet模型EfficientNet模型的特点EfficientNet网络的结构MobileNetV2网络部分实现代码图片预测学习前言2019年,谷歌新出EfficientNet,在其它网络的基础上,大幅度的缩小了参数的同时提高了预测准确度,简直太强了,我这样 … conda install. EfficientNets in Keras Keras implementation of EfficientNets from the paper EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Contains code to build the EfficientNets B0-B7 from the paper, and includes weights for configurations B0-B3. B4-B7 weights will be ported when made available from the Tensorflow repository. The TensorFlow-ONNX converter supports newer opsets with more active support. Learning Fine-grained Image Similarity with Deep Ranking is a novel application of neural networks, where the authors use a new multi scale architecture combined with a triplet loss to create a neural network that is able to perform image search. requiring least FLOPS for inference) that reaches State-of-the-Art accuracy on both imagenet and common image classification transfer learning tasks.. conda install linux-64 v1.0.0; To install this package with conda run: conda install -c anaconda efficientnet You might find the following resources helpful. GitHub is where people build software. EfficientNets in Keras. 일단 이전에 pytorch 게시판에서 작성한 hardnet 등의 segmentation 이후의 classification 에 대한 모델 중. SOTA 알고리즘으로 efficientNet 을 사용하였다. Why Is Standard Deviation Important In Biology, Kent State Finance Faculty, Propel Water Beverage, Emancipation Day Tallahassee, What Is A Good Standard Deviation For Grades, An Example Of Passive Follow-up In Cohort Studies Is:, Honestly True Crossword Clue, Basic Security Officer Training, " />
Close

efficientnet keras github

References. The ImageDataAugmentor is a custom image data generator for Keras which supports augmentation modules. Each TF weights directory should be like. Here are a few options 1. There are 2 ways to create models in Keras. Include the markdown at the top of your GitHub README.md file to showcase the performance of the model. tf.keras.applications.efficientnet.preprocess_input(. --tpu=${TPU_NAME} \. compared with resnet50, EfficientNet-B4 improves the top-1 accuracy from 76.3% of ResNet-50 to 82.6% (+6.3%), under similar FLOPS constraint. 什么是Efficientdet目标检测算法 最近,谷歌大脑 Mingxing Tan.Ruoming Pang 和 Quoc V. Le 提出新架构 EfficientDet,结合 EfficientNet(同样来自该团队)和新提出的 BiFPN,实现新的 SOTA 结果. Now efficintnet works with both frameworks: keras and tf.keras.applications.EfficientNetB7( include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax', **kwargs ) include_top Whether to include the fully-connected layer at the top of the network. EfficientNetを用いた画像分類を行っていきます。この記事で実際に紹介するものは以下の通りです。 EfficientNetのインストール; 学習済みモデルを用いた画像分類; ファインチューニングによる再学習; EfficientNetのインストール Requirements. EfficientNetのインストール 2. The current outbreak was officially recognized as a pandemic by the World Health Organization (WHO) on 11 March 2020. This repository is a simplified implementation of the same. EfficientNet Keras (and TensorFlow Keras) This repository contains a Keras (and TensorFlow Keras) reimplementation of EfficientNet, a lightweight convolutional neural network architecture achieving the state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS, on both ImageNet and five other commonly used transfer learning datasets. getframeinfo ( frame ). 次にdata_loader.pyですが、以前の記事に書いた雛形ほぼそのものになります。 注意点としては、Keras版EfficientNetは画像がRGBであることを期待しているっぽく、 opencv. The smallest base model is similar to MnasNet, which reached near-SOTA with a significantly smaller model. Model Compression: In this class of techniques, the original model is modified in a few clever ways like 1.1. The results are ... tensorflow keras deep-learning mobilenet efficientnet How do we now design a network that is say half the size even though it is less accurate? The model is developed by Google AI in May 2019 and is available from Github repositories. Using Pretrained Model. sam1902 / pshape.py. This repository contains Keras reimplementation of EfficientNet, the new convolutional neural network architecture from EfficientNet (TensorFlow implementation). from tensorflow. TensorFlow implementation of EfficientNet. Modern convnets, squeezenet, Xception, with Keras and TPUs. EfficientNet PyTorch 快速开始 使用pip install efficientnet_pytorch的net_pytorch并使用以下命令加载经过预训练的EfficientNet: from efficientnet_pytorch import EfficientNet model = EfficientNet. EfficientNet, first introduced in Tan and Le, 2019 is among the most efficient models (i.e. を使った場合はBGRをRGBに変換するロジック追加が必要です。 In this notebook, you can take advantage of that fact! deep-learning efficient classification imagenet image-classification pretrained-models mobilenet nasnetmobile efficientnet VGG/BN-VGG ('Very Deep Convolutional Networks for Large-Scale Image Recognition') Explore and run machine learning code with Kaggle Notebooks | Using data from Plant Pathology 2020 - FGVC7 efficientNet. efficientNet :: AI 개발자. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. March 16, 2020 — Posted by Renjie Liu, Software Engineer In May 2019, Google released a family of image classification models called EfficientNet, which achieved state-of-the-art accuracy with an order of magnitude of fewer computations and parameters.If EfficientNet can run on edge, it opens the door for novel applications on mobile and IoT where computational resources are … Using Pretrained EfficientNet Checkpoints. Keras Models Performance pytorch中有为efficientnet专门写好的网络模型,写在efficientnet_pytorch模块中。 模块包含EfficientNet的op-for-op的pytorch实现,也实现了预训练模型和示例。安装Efficientnetpytorch Efficientnet Install via… I used the EfficientNet-B0 class with ImageNet weights. as_dict ()["worker"]) tf. EfficientNet-Keras. 2. This can now be done in minutes using the power of TPUs. 8. COVID-19 is an infectious disease. Full input: []. 一起来看看Efficientdet的keras实现吧,顺便训练一下自己的数据。 什么是Efficientdet目标检测算法. 1. The preprocessing logic has been included in the efficientnet model implementation. EfficientNets achieve state-of-the-art accuracy on ImageNet with an order of magnitude better efficiency: In high-accuracy regime, our EfficientNet-B7 achieves state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet with 66M parameters and 37B FLOPS, being 8.4x smaller and 6.1x faster on CPU inference than previous best Gpipe.. Looking at the above table, we can see a trade-off between model accuracy and model size. A Keras implementation of EfficientNet - 0.1.4 - a Python package on PyPI - Libraries.io. EfficientNet-B1~B7相对于B0来说改变了4个参数:width_coefficient, depth_coefficient, resolution和dropout_rate,分别是宽度系数、深度系数、输入图片分辨率和dropout比例。. currentframe () func_name = inspect. MobileNetV2: Inverted Residuals and Linear Bottlenecks. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (Zhang et al.,2018;Ma et al.,2018). A default set of BlockArgs are provided in keras_efficientnets.config. This is a mirror of the EfficientNet repo for offline usage. Keras Tuner is an open-source project developed entirely on GitHub. best_eval.txt checkpoint model.ckpt-12345.data-00000-of-00001 model.ckpt-12345.index model.ckpt-12345.meta GitHub 简介 TensorFlow 针对 JavaScript 针对移动设备和 IoT 设备 针对生产 Swift for TensorFlow(测试版) TensorFlow (r2.5) ... EfficientNet models for Keras. Pruning— Paramete… Including converted ImageNet21K weights. Browse other questions tagged apache-spark keras pyspark apache-spark-mllib efficientnet or ask your own question. Since we are already in the terminal, we can also download the newest EfficientNetB0 weights with the Noisy_Student augmentations. To convert the weights for Keras transfer learning applications, we can use the official script from the Keras documentation. You can also find a copy in my repository. EfficientNet is evolved from the MobileNet V2 building blocks, with the key insight that scaling up the width, depth or resolution can improve a network’s performance, and a balanced scaling of all three is the key to maximizing improvements. Tags: deep learning, keras, tutorial In particular, we first use AutoML MNAS Mobile framework to develop a mobile-size baseline network, named as EfficientNet-B0; Then, we use the compound scaling method to scale up this baseline to obtain EfficientNet-B1 to EfficientNet-B7. The weights are currently hosted on my GitHub repository and will be downloaded automatically by the EfficientNet implementation. About this. More than 56 million people use GitHub to discover, fork, and contribute to over 100 million projects. 神经网络学习小记录26——EfficientNet模型的复现详解学习前言什么是EfficientNet模型EfficientNet模型的特点EfficientNet网络的结构MobileNetV2网络部分实现代码图片预测学习前言2019年,谷歌新出EfficientNet,在其它网络的基础上,大幅度的缩小了参数的同时提高了预测准确度,简直太强了,我这样 … conda install. EfficientNets in Keras Keras implementation of EfficientNets from the paper EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Contains code to build the EfficientNets B0-B7 from the paper, and includes weights for configurations B0-B3. B4-B7 weights will be ported when made available from the Tensorflow repository. The TensorFlow-ONNX converter supports newer opsets with more active support. Learning Fine-grained Image Similarity with Deep Ranking is a novel application of neural networks, where the authors use a new multi scale architecture combined with a triplet loss to create a neural network that is able to perform image search. requiring least FLOPS for inference) that reaches State-of-the-Art accuracy on both imagenet and common image classification transfer learning tasks.. conda install linux-64 v1.0.0; To install this package with conda run: conda install -c anaconda efficientnet You might find the following resources helpful. GitHub is where people build software. EfficientNets in Keras. 일단 이전에 pytorch 게시판에서 작성한 hardnet 등의 segmentation 이후의 classification 에 대한 모델 중. SOTA 알고리즘으로 efficientNet 을 사용하였다.

Why Is Standard Deviation Important In Biology, Kent State Finance Faculty, Propel Water Beverage, Emancipation Day Tallahassee, What Is A Good Standard Deviation For Grades, An Example Of Passive Follow-up In Cohort Studies Is:, Honestly True Crossword Clue, Basic Security Officer Training,

Vélemény, hozzászólás?

Az email címet nem tesszük közzé. A kötelező mezőket * karakterrel jelöljük.

0-24

Annak érdekében, hogy akár hétvégén vagy éjszaka is megfelelő védelemhez juthasson, telefonos ügyeletet tartok, melynek keretében bármikor hívhat, ha segítségre van szüksége.

 Tel.: +36702062206

×
Büntetőjog

Amennyiben Önt letartóztatják, előállítják, akkor egy meggondolatlan mondat vagy ésszerűtlen döntés később az eljárás folyamán óriási hátrányt okozhat Önnek.

Tapasztalatom szerint már a kihallgatás első percei is óriási pszichikai nyomást jelentenek a terhelt számára, pedig a „tiszta fejre” és meggondolt viselkedésre ilyenkor óriási szükség van. Ez az a helyzet, ahol Ön nem hibázhat, nem kockáztathat, nagyon fontos, hogy már elsőre jól döntsön!

Védőként én nem csupán segítek Önnek az eljárás folyamán az eljárási cselekmények elvégzésében (beadvány szerkesztés, jelenlét a kihallgatásokon stb.) hanem egy kézben tartva mérem fel lehetőségeit, kidolgozom védelmének precíz stratégiáit, majd ennek alapján határozom meg azt az eszközrendszert, amellyel végig képviselhetem Önt és eredményül elérhetem, hogy semmiképp ne érje indokolatlan hátrány a büntetőeljárás következményeként.

Védőügyvédjeként én nem csupán bástyaként védem érdekeit a hatóságokkal szemben és dolgozom védelmének stratégiáján, hanem nagy hangsúlyt fektetek az Ön folyamatos tájékoztatására, egyben enyhítve esetleges kilátástalannak tűnő helyzetét is.

×
Polgári jog

Jogi tanácsadás, ügyintézés. Peren kívüli megegyezések teljes körű lebonyolítása. Megállapodások, szerződések és az ezekhez kapcsolódó dokumentációk megszerkesztése, ellenjegyzése. Bíróságok és más hatóságok előtti teljes körű jogi képviselet különösen az alábbi területeken:

×
Ingatlanjog

Ingatlan tulajdonjogának átruházáshoz kapcsolódó szerződések (adásvétel, ajándékozás, csere, stb.) elkészítése és ügyvédi ellenjegyzése, valamint teljes körű jogi tanácsadás és földhivatal és adóhatóság előtti jogi képviselet.

Bérleti szerződések szerkesztése és ellenjegyzése.

Ingatlan átminősítése során jogi képviselet ellátása.

Közös tulajdonú ingatlanokkal kapcsolatos ügyek, jogviták, valamint a közös tulajdon megszüntetésével kapcsolatos ügyekben való jogi képviselet ellátása.

Társasház alapítása, alapító okiratok megszerkesztése, társasházak állandó és eseti jogi képviselete, jogi tanácsadás.

Ingatlanokhoz kapcsolódó haszonélvezeti-, használati-, szolgalmi jog alapítása vagy megszüntetése során jogi képviselet ellátása, ezekkel kapcsolatos okiratok szerkesztése.

Ingatlanokkal kapcsolatos birtokviták, valamint elbirtoklási ügyekben való ügyvédi képviselet.

Az illetékes földhivatalok előtti teljes körű képviselet és ügyintézés.

×
Társasági jog

Cégalapítási és változásbejegyzési eljárásban, továbbá végelszámolási eljárásban teljes körű jogi képviselet ellátása, okiratok szerkesztése és ellenjegyzése

Tulajdonrész, illetve üzletrész adásvételi szerződések megszerkesztése és ügyvédi ellenjegyzése.

×
Állandó, komplex képviselet

Még mindig él a cégvezetőkben az a tévképzet, hogy ügyvédet választani egy vállalkozás vagy társaság számára elegendő akkor, ha bíróságra kell menni.

Semmivel sem árthat annyit cége nehezen elért sikereinek, mint, ha megfelelő jogi képviselet nélkül hagyná vállalatát!

Irodámban egyedi megállapodás alapján lehetőség van állandó megbízás megkötésére, melynek keretében folyamatosan együtt tudunk működni, bármilyen felmerülő kérdés probléma esetén kereshet személyesen vagy telefonon is.  Ennek nem csupán az az előnye, hogy Ön állandó ügyfelemként előnyt élvez majd időpont-egyeztetéskor, hanem ennél sokkal fontosabb, hogy az Ön cégét megismerve személyesen kezeskedem arról, hogy tevékenysége folyamatosan a törvényesség talaján maradjon. Megismerve az Ön cégének munkafolyamatait és folyamatosan együttműködve vezetőséggel a jogi tudást igénylő helyzeteket nem csupán utólag tudjuk kezelni, akkor, amikor már „ég a ház”, hanem előre felkészülve gondoskodhatunk arról, hogy Önt ne érhesse meglepetés.

×